Zookeeper的学习总结

Zookeeper的核心概念:

ZNode

Znode就是核心结构,Zookeeper服务中是由大量的Znode构成。Znode一般是由客户端建立和修改,作为信息或标志的载体,甚至本身就是标志。

Znode可以设置为持久(PERSISTENT)或临时(EPHEMERAL),区别在于临时的节点若断开连接后就自动删除。建立节点时可选择是否使用序列号命名(SEQUENTIAL),若启用则会自动在节点名后加入唯一序列编号。

Session

作为客户端和Zookeeper服务之间交互的凭证。

Watch

当客户端对节点信息进行查询操作之后,可以选择是否设置一个Watch。其作用就是当本次查询的数据在服务器端发生变化之后,会对设置Watch的客户端发送通知。一次发送之后,就将删除该Watch,以后的变更或不再设置Watch则不会通知。

ACLs

节点的权限限制使用ACL,如增删改查操作。

Zookeeper的服务器安装:

1、 下载对应版本号的tar.gz文件

2、 使用  tar xzvf zookeeper-3.4.2.tar.gz -C ./  解压

3、 设置,将conf/zoo.example.cfg复制到conf/zoo.cfg或者手动建立一个新的。

4、 启动Zookeeper服务:bin/zkServer.sh start

5、 启动客户端连接:bin/zkCli.sh -server 127.0.0.1:2181(此处在本机,且使用了默认端口,且在Java环境中)

6、 使用命令:ls、get、set等。

7、 关闭Zookeeper服务:bin/zkServer.sh stop

Zookeeper代码编写:

代码编写部分比较简单,因为暴露的接口很少,主要复杂在于项目如何使用节点以及节点信息。

启动Zookeeper服务之后,客户端代码进行节点的增删,Watch的设置,内容的改查等。

此处建议查看官方的《Programming with ZooKeeper - A basic tutorial》部分,当中举了两个例子来模拟分布式系统的应用。

代码基本没有问题,唯一需要注意的就是:若之间按照原版进行调试时,有可能在调用

 Stat s  =  zk.exists(root,  false );

这句代码时会出现一个异常,当中包括“KeeperErrorCode = ConnectionLoss for”。

这个问题引起的原因可以看一下代码

                System.out.println( " Starting ZK: " ); 
                zk  
=   new  ZooKeeper(address,  3000  this ); 
                mutex  
=   new  Integer( - 1 ); 
                System.out.println( 
" Finished starting ZK:  "   +  zk);

最后一行有打印出Zookeeper目前的信息,若未修改的原代码,此处的State应当是CONECTING。连接中的时候去验证是否存在节点会报错。解决的方法也很简单,就是等到Zookeeper客户端以及完全连接上服务器,State为CONECTED之后再进行其他操作。给出代码示例:

//  使用了倒数计数,只需要计数一次 
private  CountDownLatch connectedSignal  =   new  CountDownLatch( 1 );  
SyncPrimitive(String address) { 
     
if (zk  ==   null ){ 
         
try  { 
            System.out.println( 
" Starting ZK: " ); 
            zk  
=   new  ZooKeeper(address,  3000  this ); 
            mutex  
=   new  Integer( - 1 ); 
            connectedSignal.await();  
//  等待连接完成 
            System.out.println( " Finished starting ZK:  "   +  zk); 
        }  
catch  (IOException e) { 
            System.out.println(e.toString()); 
            zk  
=   null ; 
        }  
catch  (InterruptedException e) { 
             
//  TODO Auto-generated catch block 
            e.printStackTrace(); 
        } 
    } 
     
// else mutex = new Integer(-1); 
} 
synchronized   public   void  process(WatchedEvent event) { 
     
//  此处设立在Watch中会在状态变化后触发事件 
     if  (event.getState()  ==  KeeperState.SyncConnected) { 
        connectedSignal.countDown(); 
//  倒数-1 
    } 
     
         
synchronized  (mutex) { 
             
// System.out.println("Process: " + event.getType()); 
            mutex.notify(); 
        } 
}

这样就可以正确运行代码了。

Zookeeper的应用场景及方式:

此处是为引用,原地址为( http://rdc.taobao.com/team/jm/archives/1232  

ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得zookeeper能够应用于很多场景。网上对zk的使用场景也有不少介绍,本文将结合作者身边的项目例子,系统的对zk的使用场景进行归类介绍。 值得注意的是,zk并不是生来就为这些场景设计,都是后来众多开发者根据框架的特性,摸索出来的典型使用方法。因此,也非常欢迎你分享你在ZK使用上的奇技淫巧。

场景类别

典型场景描述(ZK特性,使用方法)

应用中的具体使用

数据发布与订阅

发布与订阅即所谓的配置管理,顾名思义就是将数据发布到zk节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新。例如全局的配置信息,地址列表等就非常适合使用。

1. 索引信息和集群中机器节点状态存放在zk的一些指定节点,供各个客户端订阅使用。2. 系统日志(经过处理后的)存储,这些日志通常2-3天后被清除。 

3. 应用中用到的一些配置信息集中管理,在应用启动的时候主动来获取一次,并且在节点上注册一个Watcher,以后每次配置有更新,实时通知到应用,获取最新配置信息。

4. 业务逻辑中需要用到的一些全局变量,比如一些消息中间件的消息队列通常有个offset,这个offset存放在zk上,这样集群中每个发送者都能知道当前的发送进度。

5. 系统中有些信息需要动态获取,并且还会存在人工手动去修改这个信息。以前通常是暴露出接口,例如JMX接口,有了zk后,只要将这些信息存放到zk节点上即可。

Name Service

这个主要是作为分布式命名服务,通过调用zk的create node api,能够很容易创建一个全局唯一的path,这个path就可以作为一个名称。

 

分布通知/协调

ZooKeeper中特有watcher注册与异步通知机制,能够很好的实现分布式环境下不同系统之间的通知与协调,实现对数据变更的实时处理。使用方法通常是不同系统都对ZK上同一个znode进行注册,监听znode的变化(包括znode本身内容及子节点的),其中一个系统update了znode,那么另一个系统能够收到通知,并作出相应处理。

1. 另一种心跳检测机制:检测系统和被检测系统之间并不直接关联起来,而是通过zk上某个节点关联,大大减少系统耦合。2. 另一种系统调度模式:某系统有控制台和推送系统两部分组成,控制台的职责是控制推送系统进行相应的推送工作。管理人员在控制台作的一些操作,实际上是修改了ZK上某些节点的状态,而zk就把这些变化通知给他们注册Watcher的客户端,即推送系统,于是,作出相应的推送任务。 

3. 另一种工作汇报模式:一些类似于任务分发系统,子任务启动后,到zk来注册一个临时节点,并且定时将自己的进度进行汇报(将进度写回这个临时节点),这样任务管理者就能够实时知道任务进度。

总之,使用zookeeper来进行分布式通知和协调能够大大降低系统之间的耦合。

分布式锁

分布式锁,这个主要得益于ZooKeeper为我们保证了数据的强一致性,即用户只要完全相信每时每刻,zk集群中任意节点(一个zk server)上的相同znode的数据是一定是相同的。锁服务可以分为两类, 一个是保持独占,另一个是控制时序。  

所谓保持独占,就是所有试图来获取这个锁的客户端,最终只有一个可以成功获得这把锁。通常的做法是把zk上的一个znode看作是一把锁,通过create znode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。

控制时序,就是所有视图来获取这个锁的客户端,最终都是会被安排执行,只是有个全局时序了。做法和上面基本类似,只是这里 /distribute_lock 已经预先存在,客户端在它下面创建临时有序节点(这个可以通过节点的属性控制:CreateMode.EPHEMERAL_SEQUENTIAL来指定)。Zk的父节点(/distribute_lock)维持一份sequence,保证子节点创建的时序性,从而也形成了每个客户端的全局时序。

 

集群管理

1.  集群机器 监控:这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:1. 集群中机器有变动的时候,牵连修改的东西比较多。2. 有一定的延时。 

利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:a. 客户端在节点 x 上注册一个Watcher,那么如果 x 的子节点变化了,会通知该客户端。b. 创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。

例如,监控系统在 /clusterServers 节点上注册一个Watcher,以后每动态加机器,那么就往 /clusterServers 下创建一个 EPHEMERAL类型的节点:/clusterServers/{hostname}. 这样,监控系统就能够实时知道机器的增减情况,至于后续处理就是监控系统的业务了。 
2.  Master选举则是zookeeper中最为经典的使用场景了。

在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。

利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,最终一定只有一个客户端请求能够创建成功。

利用这个特性,就能很轻易的在分布式环境中进行集群选取了。

另外,这种场景演化一下,就是动态Master选举。这就要用到 EPHEMERAL_SEQUENTIAL类型节点的特性了。

上文中提到,所有客户端创建请求,最终只有一个能够创建成功。在这里稍微变化下,就是允许所有请求都能够创建成功,但是得有个创建顺序,于是所有的请求最终在ZK上创建结果的一种可能情况是这样: /currentMaster/{sessionId}-1 , /currentMaster/{sessionId}-2 , /currentMaster/{sessionId}-3 ….. 每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上小时,那么之后最小的那个机器就是Master了。

1. 在搜索系统中,如果集群中每个机器都生成一份全量索引,不仅耗时,而且不能保证彼此之间索引数据一致。因此让集群中的Master来进行全量索引的生成,然后同步到集群中其它机器。2. 另外,Master选举的容灾措施是,可以随时进行手动指定master,就是说应用在zk在无法获取master信息时,可以通过比如http方式,向一个地方获取master。

分布式队列

队列方面,我目前感觉有两种, 一种是常规的先进先出队列,另一种是要等到队列成员聚齐之后的才统一按序执行 。对于第二种先进先出队列,和分布式锁服务中的控制时序场景基本原理一致,这里不再赘述。 

第二种队列其实是在FIFO队列的基础上作了一个增强。通常可以在 /queue 这个znode下预先建立一个/queue/num 节点,并且赋值为n(或者直接给/queue赋值n),表示队列大小,之后每次有队列成员加入后,就判断下是否已经到达队列大小,决定是否可以开始执行了。这种用法的典型场景是,分布式环境中,一个大任务Task A,需要在很多子任务完成(或条件就绪)情况下才能进行。这个时候,凡是其中一个子任务完成(就绪),那么就去 /taskList 下建立自己的临时时序节点(CreateMode.EPHEMERAL_SEQUENTIAL),当 /taskList 发现自己下面的子节点满足指定个数,就可以进行下一步按序进行处理了。

 

收藏  | 打印  | 字体:  -缩小  放大+    
[ x ] 请正确填写下面信息


是否保存此网页快照 是否公开此收藏

查看全部评论(0)我来说两句